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Within the context of a particular statistical discrimination task, we make a 
quantitative comparison between the performance of a feed-forward neural 
network and the information-theoretic optimal performance. We also address 
the ability of such networks to generalize and the effect of network architecture 
on performance. 
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1. I N T R O D U C T I O N  

In our efforts to understand the visual system, we must answer a number 
of basic questions before launching into speculation and theory. Recently, 
Bialek and Zee ~1'2) emphasized that one such basic question concerns the 
computational abilities of the visual syst, em. We are apt to feel that our 
visual systems perform extremely well. But a statement of this sort, which 
occurs frequently in the vision literature, begs the obvious question of what 
this alleged high performance is to be compared to. Bialek and Zee 
suggested that the actual performance of the visual system is to be com- 
pared to an optimal performance defined by information theory, in other 
words, the best performance achievable by a machine which has complete 
information on how the seen image is generated. They analyzed this 
optimal performance and showed that it can be characterized by concepts 
from statistical mechanics and (in the continuum case) field theory. They 
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outlined how psychophysical experiments can be done on human subjects 
and the measured performance compared to the optimal performance. 

In the last few years, neural networks have attracted a great deal of 
attention (see, e.g., ref. 3). In particular, with backpropagation, feed- 
forward networks can learn to perform a variety of tasks, (4~ including 
perceptual tasks. (5) For instance, Scalettar and Zee (6) have showed how a 
network can learn to decide whether a given object is to the left or to the 
right of another object. 

In this paper we make contact between the two studies by comparing 
the performance of networks with the optimal performance determined by 
information theory. The task assigned is statistical discrimination, of the 
type discussed in ref. 1. The network is presented with a configuration of a 
one-dimensional chain of Ising spins. The configuration belongs to the 
equilibrium ensemble at temperature /~-1 of either a ferromagnet or an 
anti-ferromagnet. The network is to decide whether the configuration is 
ferromagnetic or antiferromagnetic. We also study the ability of the net to 
discriminate between ferromagnetic configurations at two different tem- 
peratures and to determine whether next-nearest-neighbor interactions 
were present in generating a particular spin configuration. For example, we 
can ask the net to discriminate between configurations generated when the 
inverse temperature/~ = lIT is zero, that is, totally random configurations, 
and configurations generated when /3 is small but nonzero, that is, con- 
figurations with incipient order. We chose this problem partly because 
humans appear to do quite well at detecting patterns and order and partly 
because it provides a simple model where optimal performance is analyti- 
cally calculable and hence the performance of a neural net can be measured 
meaningfully. This problem also provides an example of learning with 
noise. In standard examples of learning, the net is told what the unique 
correct answer is after each trial. Here the net is confused by fluctuations: 
thus, a configuration generated at /~ = 0 could happen to have a high 
degree of order by chance. 

The use of neural networks is potentially promising as a technique to 
study correlations in complicated statistical mechanical systems. In a sense 
the net learns to do a primitive sort of data analysis. After looking at the 
input configurations ("the data") it can tell us about the Hamiltonian that 
generated these configurations (by telling us whether next-nearest-neighbor 
interactions were present, for example.) 

With this example we can also study how well the net generalizes from 
one task to another. Thus, we can test a net trained to discriminate 
between ferromagnetic order and antiferromagnetic order to see how well 
it will discriminate between ferromagetic orders at different temperatures. 

An important issue is how the performance depends on the architec- 
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ture of the net. Looking at the performance of a net, can we learn some- 
thing about its architecture? It is quite a leap from simple nets to the 
human visual system, but we envisage the present work as something of a 
prototype of how one might one day explore the visual system 
quantitatively. (~'2~ By measuring the performance of the human visual 
system and comparing the actual performance to the optimal performance 
for a variety of tasks, we may be able to learn something about its 
architecture. 

2. O P T I M A L  P E R F O R M A N C E  

An Ising ferromagnet in one dimension is described by the 
Hamiltonian 

H= - ~  SiSi+I (1) 
i 

Si is a classical variable at site i which can take the values + 1. If we choose 
periodic boundary conditions, the spin configuration {$1, S: ..... SN = $1 } 
appears with the probability 

P({S}lfi)=Z-l(fl)exp(fl~. S,S,+I) (2) 

with the partition function 

Z(fl)=~s eXp(fi~SiS,+l)=2N[(chfl)N+(shfl)N] (3) 

The energy is minimized by configurations of parallel spins. Thus, at low 
temperatures the probability is strongly peaked in favor of configurations 
that are mostly all S i=  +1 or all S i=  -1 .  Indeed, in dimensions greater 
than one, below a certain critical temperature T c the system locks into a 
phase where the magnetization m, the difference between the number of + 1 
and - 1  spins, is nonzero. 

Suppose that for a given configuration we are asked to decide whether 
the temperature is/311 or fl~-l. Define the discriminant 

~( {S} ;  J~l VS/~2) = log P( {S} Ifll) (4) 
P({S} 1/72) 

According to signal detection theory,(7/the optimal unbiased discrimination 
is reached by maximum likelihood: we say the inverse temperature is fil if 
2 > 0 and /32 if 2 < 0, precisely what any sensible person would do. The 
probability of correctly identifying the ensemble at temperature fl 1 is then 

P~.(if fl~)= ~ P({S}Ifi~) O[2({S}; ~1 VS ]~2)] (5) 
S 

822/57/1-2-10 
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where O denotes the Heaviside step function. More generally, one can 
define the probability distribution of the discriminant 

~()~;~IVS~2;~I)=EP({S}[fl)(~(~--.~({S);~IVS~2)) ( 6 )  
S 

from which 

;o Pc(if i l l)-- dR~(2;31vsf12;f11) 

can be computed; and similarly for ~(2;  fit vs fla; f12) and 

0 

Pc(iff la)=f d). ~i~(~; f i vs B2 ; B2) 
oo 

If in the presentation the ensemble at flu is chosen with probability P(fl,) 
(a = 1, 2), then the probability of correct identification is 

P~. = P~.(if ill) P ( f l )  + Pc(if f2) P(32) 

= y~ P ( { s }  I/~i) *'(/~t) o ( , t ( { s} ;  ~t vs f2))  
S 

+ P({S}IB=) P(32) O(-)~({S};  31 vs fi2)) 

In our simulation below, we always set P(fll)= P ( f 2 ) =  1/2. 
Discrimination between ferromagnet and antiferromagnet is a special 

case of discrimination between two temperatures with fi~ = f and f12 = - f .  
In general, with P({S} I f )  = Z - l ( f )  e-eU(s) we have 

z(fl,) 
2({S}; fit vs f12)= - ( B i t -  f2) H ( S ) -  log - -  

Z(fl2) (7) 

= f l l ( r ( f l t )  - H(S)) - ( f t  ~ f12) 

where F(fl) is the free energy. 
The probability distribution ~(2)  is readily calculated to be 

exp[ + ice(fit - f2) H(S) ]  

xe({s}l~l) (8) 

: f ~- o~ dC~ { exp [ ic~ ( 2 + l~ Z ( fl t , ~ ] ; Z ( fl l - ie ̀  f11- f12 , Z---~2 ) J J J -Z--~I ) 

Note that the partition function at complex temperature enters. 



P e r f o r m a n c e  o f  a F e e d - F o r w a r d  N e t w o r k  145 

Normally, as in the case discussed in refs. 1 and 2, the evaluation of 
P~, and N(2) is intractable and essentially amounts to solving a statistical 
mechanics system or a field theory. Here we chose a particularly simple 
system so that the relevant quantities can all be evaluated analytically. The 
discriminant is 

)~( { S } ;  f l l  VS f12) ~-- ( i l l  - -  f12) 2 S i S i + l  - -  log - -  
Z(fl~) 
z(fl~) 

For discrimination between ferromagnet and antiferromagnet and for 
N even, it simplifies to an expression 

2({S}; fl vs - f l ) = 2 f i ~  S,S,+~ =2fill(S) (9) 

proportional to the Hamiltonian. H(S) is just the number of pairs of 
parallel spins minus the number of pairs of antiparallel spins. Thus, the 
optimal unbiased strategy mentioned earlier is precisely what any sensible 
person would adopt: if there are lots of parallel spins, call it a ferromagnet; 
if not, call it an antiferromagnet. [The case N odd is different because the 
antiferromagnetic chain is then "frustrated." The distinction between N 
even and odd vanishes for large N when (th f l )u~ 1.] 

For N even, 

2e 
k = 0  
even 

and the integration over c~ may be performed term by term to give 

2e fllN N.~ ( ~  Z ( f l l )  (fll-fi2)(N-2k)) +log  + 

even 

(m) 

with 

k = 0  
even 

( l l)  

where the prime on the summation sign restricts the sum to 

( 2 k -  N)(fl~ - f12) > log 
z(f l ,)  
z(fl~) 
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The same result can also be obtained by carefully enumerating all possible 
configurations and weighting them by their probabilities of occurrence. 
These formulas simplify for fil = -fi2 = fl, in which case we write 2 = 2flNx 
with the variable x ranging between - 1  and + 1. Using Stirling's formula 
for large N, we find 

. .@(X) = 2[ , , (1  -t- e2fl) N + ( 1  - -  e2~) N] e f(x) (12) 

with 

N N 
f ( x ) =  --Nlog ~ - - ~ -  [-(1 + x) log(1 + x ) +  (1 - x) log(1 +x)-2flx] (13) 

The maximum o f f (x )  occurs at x =  th fl at which d2f /dx  2= - N c h  2 ft. 

3. NEURAL NET P E R F O R M A N C E  

We now proceed to compare these expressions for the optimal perfor- 
mance with the performance attained by a feed-forward neural network. 
Such a network consists of a set of "input neurons" which are given some 
values I i from an external source. In our case these values are the con- 
figuration of an Ising spin system equilibrated to inverse temperature fl, i.e., 

Ii=Si (14) 

This input information is processed through intermediate layers of 
"hidden" neurons. We will consider only networks with one hidden layer. 
The values of the hidden neurons are obtained by 

Hg=tanh (~ TJj--Oi) (15) 

Finally, the "output" neurons have activities given by 

O~= tanh ( ~  WijHj--(/)i) (16) 

In our case we have a single output neuron whose target value is chosen 
to be T =  - 1  if the spin configuration came from the ensemble at ill, and 
T =  +1 otherwise. 

The simulation proceeds as follows: We first equilibrate two distinct 
Ising spin chains (with periodic boundary conditions) to temperatures fll 
and f12 and set up the weights in our neural net at random. (We call Ti.j, 
W~,j, 0~, and ~b~ collectively the weights.) We next select, with probability 
1/2, a spin configuration from one of the two ensembles. We also sweep 
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through the lattice a few times doing Monte Carlo updates to ensure that 
the next sampling of that ensemble yields an independent configuration. 
We then present the Ising spins as input to the network and calculate the 
values of the hidden neurons and the output neuron. Naturally, with the 
original random weights the output of the net will bear no relationship to 
the target. However, the net can "learn" the task of distinguishing the two 
ensembles if the weights and thresholds are updated by gradient descent to 
minimize the "energy" 

E = � 8 9  2 (17) 

That is, denoting the weights generically by w, we change the weights by 
an amount 

&w = - r l  ~E/Ow (18) 

This procedure has been shown to give rise to weights which make the 
output O of the net match the target T in a variety of problemsJ 41 
Recently, log likelihood criteria ~ have been discussed as replacements for 
the squared error, although we have restricted ourselves to the form (17). 
We are interested in how well the net can learn our particular task. There 
are two possible sources of error: As stated earlier, there is an unavoidable 
error rate associated with the fact that any spin configuration could have 
come from either ensemble. This feature of our problem is not present in 
the usual tasks where a well-defined "answer" is usually available. There is 
also an error rate associated with the failure of the net itself to learn the 
task perfectly. 

We first studied a network without a hidden layer and with sparse 
connections: each hidden unit is connected only to three adjacent input 
neurons. Further, we required that the weights be translationally invariant. 
Thus, there are only six variables in this simple problem, four weights and 
two thresholds. We studied lattices which ranged in size from 8 to 32 spins. 
Learning rates and optimal performances were insensitive to lattice size. 

We show in Figure 1 how the net learns to discriminate between 
ferrol~agnetic ordering at /32 = 0  and at /32 = 1/2. The performance Pc is 
shown as a function of the number of configurations presented. We have 
defined a correct response to be one in which the output is within 0.2 of 
its target value. It is found that the results are not dependent on this 
choice. Indeed, the neural net's output after training was strongly peaked 
at __ 1, i.e., if the net gave the wrong output, it was typically completely 
wrong, not some intermediate value near 0. Since the initial weights were 
random, Pc is initially 1/2. The net then subsequently "learns" and 
increases Pc. We expect that the net has an easier time for f12 large than 
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Fig. 1. The performance Pc of a net whose task is discriminating configurations generated 
from ensembles at inverse temperature fll = 0 and f12 = 1/2 shown as a function of the number 
of input configurations presented. The dashed horizontal line is the optimal performance. 

for f12 ~ 0. This is indeed borne out in the simulation. We say that the net 
has learned if the fraction of correct choice Pc has flattened out more or 
less to some asymptotic value. In our simulations, we allow the net to 
"graduate" if APe from one trial to the next is less than 0.01. (Note that 
graduation is not based on the net having mastered the task, but by its 
inability to learn further: be all it can be, as the slogan goes.) The result 
for this asymptotic value is plotted in Fig. 2. We note that the net's perfor- 
mance is remarkably close to the optimal performance. In Fig. 3, we plot 
the efficiency, defined as Pc(net)/Pc(optimal), as a function of f12. We see 
that this increases with increasing f12, as one might expect. Clearly, if we 
allow the net to graduate after some fixed Na  of trials with N a independent 
of f12, the corresponding plots of Figs. 2 and 3 will be slightly different. The 
net underperforms by a wider margin at small f12. 

We can now address the issue of generalization by asking whether a 
net trained to distinguish ferromagnetic and antiferromagnetic ensembles 
will also distinguish high and low temperature. We train a net at the 
ferromagnetic-antiferromagnetic task. Its performance, as shown in Fig. 4, 
is nearly optimal. We then take the net and the weights it developed and 
compare its output with the target for the two-temperature task without 
any further evolution of its weights at the new task. These results are 
shown in Fig. 5. We see the performance is nearly as good as that given in 
Fig. 2. This is a real test of generalization, since the configurations realized 
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Fig. 2. The asymptotic value for Pc for distinguishing B1 = 0 from 82 shown as a function of 
/32- The smooth curve is the optimal performance and the circles are the performance of the 
net. 
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Fig. 4. The performance of a net trained at the task of distinguishing ferromagnetic and 
antiferromagnetic configurations. # = 1/4. The dashed horizontal line is the optimal perfor- 
mance, 
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Fig. 5. Same as for fig. 2, except that the net was one trained on the ferromagnetic 
antiferromagnetic task and then tested on the two-temperature task without any further 
evolution of its weights. 
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for an antiferromagnet are concentrated about the "staggered" ones where 
_+ 1 alternate. While these do share the characteristic m ~ 0 of high tem- 
perature, they clearly are a very restricted subset of the set that the high-T 
ensemble samples. This remarkable performance can, however, be readily 
understood if the net is using a means of distinguishing the ensembles, 
like measuring the mean magnetization m, which works for either task. 
Finally, Fig. 6 shows asymptotic values for Pc for the ferromagnetic- 
antiferromagnetic task as a function of/~. 

As a further test of generalization we train a net to discriminate 
between ferromagnetic ordering at /~1 and /~2. We then ask the net to 
discriminate between ferromagnetic order at/~'l and/~;.  We choose/~1 = 0 
and /~2=0.5 and then test generalization on /~l =6/3 and /~2=0.5 +~/~. 
Figure 7 shows P/Popt as a function of 6/~. 

A further interesting question in the study of neural networks is to 
determine the way in which the problem is "represented" in the net, i.e., to 
look at the weights the net develops. In particular, one might ask whether 
the net will develop weights which can be identified as counting the number 
of parallel and antiparallel spins. These weights would clearly look like the 
weights developed in solving the XOR problem. We find that the weights 
do indeed correspond to measuring the number of parallel near-neighbor 
spins. A net with such sparse connections was actually somewhat better at 
learning the task at hand than a fully connected net. This should perhaps 
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Fig. 6. The asymptotic value for Pc for distinguishing ferromagnetic and antiferromagnetic 
configurations shown as a function of/~. The smooth curve is the optimal performance and 
the circles are the performance of the net. 
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Fig. 7. Performance of a net trained at distinguishing /71=0 and fl2=1/2 at the task of 
distinguishing Pl = 6/? and/?2 = 1/2 + 6/?, as a function of 6/?, without any further evolution of 
its weights. 

be expected, since the relevant discriminant depends most crucially on 
SiS,+ ~ and one is forcing the net to look at this function and since the fully 
connected net contains more weights that can be varied. 

This naturally leads us to ask another task of our net. We modify the 
Ising Hamiltonian to include next-nearest interactions 

H= - •  SiSi+l + K• SiSi+2 (19) 
i i 

We can ask the network to distinguish configurations at the same tem- 
perature, but with different values of K. In Fig. 8a we show the results of 
discriminating between K = 0 and K positive, and in Fig. 8b between K = 0 
and K negative. In the former case, the interactions compete. The open 
circles represent results for a net with translationally invariant local 
connections, and the crosses a fully connected net with independent 
weights. (This generalized Ising model can also be solved explicitly, as all 
short-ranged one-dimensional Ising models can be. However, we have not 
bothered to work out the analytic expressions for the optimal performance, 
but merely contended ourselves with plotting the optimal performance 
numerically.) We see that the net can master this task and that nonlocal 
connections help as the range of the interactions increases with this addi- 
tional next-near-neighbor term. 
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Performance of a net distinguishing the presence of a K > 0  next-near-neighbor 
interaction, as a function of K. (See text.) 

][n a sense, the tasks we have chosen are too simple and the net learns 
these tasks quite readily. Essentially the net only needs to measure local 
correlations. It is perhaps more interesting to find some more difficult 
example, suppose we consider 

H= - ~  SiSi+ 1 ~- J 2  sigi+5 
i 

0 . 8 -  

o.6 I 

q 

0 . 4 !  

3 . 2  i 

o o i  
- 1  . 0  0 . 8  

Fig. 8b. 

i i i 

- 0 . 6  - 0 . 4  - 0 . 2  

Same as Fig. 8a, except K < 0. 

0 . 0  



154 Bialek et  al. 

1 . 0  

0 . 6  

0 . 4 -  

0 . 2 -  

0 . 0  

2 

\ 

\ /  
l *++, +++ 

I I I I I I I I  I I  

- 1  @ 

I I 
i 

I I 

i 
I I 

Fig. 9. Performance of a net (circles) at distinguishing the presence of a JXSiSI+5 
interaction, as a function of J. (See text.) The curve is the optimal performance. 

The J interaction has a range (arbitrarily chosen to be) outside the view of 
each individual hidden unit. We expect that when J >  1 the net will have 
a great deal of difficulty mastering this task. This is indeed shown to be the 
case in Fig. 9. To pick out the longer range correlation, we add a second 
hidden layer as shown in Fig. 10. We expect the performance to improve, 
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Same as for Fig. 9, except for a net with a hidden layer. 
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as it indeed does. We expect in general that there will be a relation between 
the architectures of nets that perform well and the Hamiltonian that is 
generating the ensembles. 

4.  C O N C L U S I O N S  

Here we summarize some of our results. First, we have studied a some- 
what novel neural network task. In the literature, networks are typically 
given problems to which there is a definite answer on any given trial. Here, 
in contrast, a configuration may look entirely ferromagnetic, but could in 
fact be an unlikely fluctuation of an antiferromagnet. Thus, already in the 
learning phase, the network is subjected to confusing and possibly contra- 
dictory signals. Also, the network is clearly required to generalize, since for 
N large the network could have seen only a tiny fraction of the 2 N possible 
spin configurations. Clearly it can do this since the input configurations are 
generated according to some well-defined rules. 

Second, we have shown that neural networks indeed perform at 
optimal in at least some cases. Suppose the psychophysics experiments out- 
lined in the program proposed in refs. 1 and 2 were actually done. If similar 
studies were done to determine the optimal performance of various models 
of the human visual system, we could perhaps eliminate or advance some 
models according to whether their performance matched up reasonably 
with that of real biological systems. As remarked in the introduction, the 
hope is that by measuring the performance of a net or the human visual 
system as a black box we can learn something about its architecture. In our 
simple example, this can clearly be done. At a rather trivial level, we see 
readily that the net would fail rather drastically at these discrimination 
tasks were a hidden layer not present. In the problem, two configurations 
generated one from the other by flipping all the spins are regarded as the 
same, while the net (without any hidden layer) would clearly treat these 
configurations as different. Thus, the net would not be able to learn. As 
another example, by measuring the performance of the net at the task 
described in Fig. 10, we could have learned, in principle, that there must be 
more than one hidden layer. 

Finally, while the problem we chose is particularly simple, the hope is 
that neural nets might eventually be trained to determine the phase of more 
complicated systems. It would be interesting, for example, if a net could 
determine whether a frustrated spin system were in a glassy phase, rather 
than using some more traditional measurement of the specific heat or 
susceptibility. Further, in cases where the order parameter might not be 
well established, the weights the net develops might help in determining the 
relevant correlation functions to study. This  may be useful in Monte Carlo 
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simulations where the symmetry  of the order parameter  is not  immediately 
obvious. 

With some exaggeration, we may regard the mastery of the type of 
tasks discussed here as a crude pro to type  of physics itself. By detailed 
examinat ion of the world (the input configurations) can careful analysis of 
the correlations see, physicists try to determine the Hamil tonian  respon- 
sible. To dramatize an obvious point, we have plotted in Fig. 13 the perfor- 
mance at distinguishing /~1 = 0 from /~2 =/~ as a function of /~ for a net 
seeing ensembles generated with 

H =  - J ~  S i S i +  1 - -  K ~  SIS,+2 

with J =  1 and K =  1/2. The optimal performances for different K are 
shown. We see that  K =  1/2 does best fit the net's actual performance. We 
could in this case have roughly determined H from the neural net perfor- 
mance. 

In general, if the actual performance falls far below the optimal, we 
can conclude that  the Hamil tonian  is incorrect or  the architecture is 
inappropriate.  We could then try some other  Hamil tonian  or  some other  
architecture. On  the other  hand, if the actual performance exceeds the 
optimal performance, then clearly we have again guessed the wrong 
Hamiltonian.  

In conclusion, we have illustrated a number  of  points with a par- 
ticularly simple problem. We expect that  the possibilities illustrated here 
will also hold in more  complicated situations. 
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